Figure F.7. Rotor-based PSC Enclosure (Top View)
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Figure F.8. Rotor-based PCM Enclosure (Side View)

/Himge

Analog
Input #1

Analog
Input #2

ESP-32 Digital
3.1-95% Input #3

Heater
Input Resolver Digital Digital
120 VAC Input Input #4 Input #5
PCM 2
© o)
Purge Pressure
Release
PCM Enclosure — View from Nacelle looking Downwind

PCM Clock (input) from “PSC” box

Purge Pressure

Serial Link from “PSC” box

DC Power (input) from “PWR” box

PCM Enclosure — View from Boom Camera looking Upwind



Ground—based PCM Rack
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Figure F.10. Ground-based PCM rack I/O
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Figure F.11. Aspirator Alarm Panel Schematic
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Figure F.13. Pressure Tap Layout
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accelerometers
nacelle, 19, B-29
blade tip, 19, B-29

acrodynamic force coefficients, 29, 30

air density
calculation of, 28

analog/digital conversion, B-54

anemometers
bi-vane, 7, 9, B-5—B-10
cup, 8, B-2—B-4
prop-vane, 7
sonic, 7, 9, B-11—B-13

barometric pressure, 7, 9, B-19
bending moments. See strain gages.

blade
bending moments, 18—20, B-21—B-25
geometry, 5, 6, A-2—A-8
installation of, strain gages, 20
materials, 5, A-6
mass, 22, A-6
pitch angle fluctuations, 21
pressure instrumentation, 12—15, B-39—
B-46
S809 airfoil, 4, A-4
stiffness, A-7, A-8
twist distribution, 6, A-3

brake
rotor, 4
yaw, 3, 19

calibration procedures

for creation of calibration coefficient
database, 26, B-23, B-62

for electronic path calibration, 25, B-62

for instruments used to calibrate measured
channels, B-63

for 5-hole probes, 11

for strain gages, 25, B-21, B-61

for pressure transducers, 16, 25, B-39, B-
61

calibration procedures (continued)
using manufacturer specifications, 25, B-
61, B-69
using single point offset, 25, B-61, B-69

correction

centrifugal force on air column in
reference line of pressure transducers,
16, 17,27

hydrostatic variation, 17

reference pressure offset, 16, 34, 35

strain gage cross-talk, 20

upwash, 32

cycle count index, 33

data processing, B-58, B-60, B-64—B-72
cycle average data base, 27
engineering unit file creation, 26
header file creation, 26
Phase II data format conversion, 27
real time display, 26

derived channels
acrodynamic force coefficients, 29
angle of attack, 32
blocked pressure taps, 29
cycle count index, 33
dynamic pressure, 28
Richardson number, 33
RPM, 33
surface pressure coefficients, 29
wind speed and direction, 34
yaw error, 33

digital encoders. See position encoders.
digital input/output, B-54

drive-train
components, 4, A-8—A-9
efficiency, 4, A-9
generator slip, 4, A-9
rotating system inertia, 4, A-8
rotor inertia, 4, A-8

dynamic characteristics
blade, 6, A-8
full system, A-11
tower, A-10
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dynamic pressure
from blade stagnation pressure, 28
from 5-hole probe total pressure, 11
from Kiel probe total pressure, 10

errors
5-hole probe calibration, 12
azimuth angle measurement, 21
heaters, 16, 34
local flow angle flag measurement, 18
reference pressure offset, 34, 35
RPM calculation, 21
transducer range, 27

file format, B-69
filters, 24, B-53

five-hole probe
calibration of, 11
dynamic pressure, 11, 28
local flow angle, 18
location, 12, 13
Phase III test probe, 11, 18
purging of, 16, B-44
spanwise flow angle, 18
upwash corrected angle of attack, 32

flow visualization
black blade for, 6
cameras for, 22
lighting for, 23
tufts for, 22
video images from, 23, 26

generator power, 22, B-32
geographic location, 3
hub mass, 22, A-6

inflow measurements, 7, 9
barometric pressure, 7, 9, B-19
bi-vane anemometer, 7, 9, B-5—B-10
cup anemometer, 8, B-2—B-4
prop-vane anemometer, 7
temperature, 7, 9, B-14—B-18
sonic anemometer, 7, 9, 35, B-11—B-13
vertical plane array, 7

local flow angle
5-hole probe, 17 (See also five-hole probe)
flag device, 17, 17, B-37
relation to angle of attack, 17
upwash correction, 32

low-speed shaft bending: and torque,
18—20, B-26

meteorological towers. See inflow
conditions.

modal analysis. See dynamic
characteristics.

PCM system
encoding/decoding, 23, B-55
filters, 24, B-53
quantization errors, 24
sample rates, 24
software, 26, B-58—B-60, B-64—B-72

pitch shaft
deflection, 6
description, 6, 20

position encoders
azimuth, 21, B-34—B-36
blade pitch, 21, B-34—B-36
local flow angle, 17, B-37
yaw, 21, B-34—B-36

power train. See drive-train.
pressure system controller, 17

pressure transducers, 16, B-39
calibration of, 17, B-39—B-46
digital, for calibration, B-45
location of, 13, 16
reference pressure for, 16, 17

purging: taps, 5-hole probes, 16, B-44
RPM, calculation of, 21, 33

reference pressure
calculation of, correction, 34
correction factors, 35
measurement of, 22
offset, 16

Richardson number, 33

root bending moments, 18—20, B-21
S809 airfoil. See blade.

signal conditioning, B-49—B-52

strain gages
blade, 18—20, B-25
cross-talk, 20
low-speed shaft, 18—20, B-25
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strain gages (continued)
root, 18—20, B-21
tower, 19
yaw moment, 19, 20, B-28

surface pressure (See also pressure
transducers)
dynamic effects in measurement of, 13, 15

surface pressure (continued)
normalization of, coefficients, 23, 29
taps and tubing, 12, 13, B-39

temperature
potential, for calculation of Richardson
number, 33
air, 7, 9, B-14
dew point, 7, 9, B-15

thrust: and torque, calculation of estimated
aerodynamic, 19, 20

time code generator, 22, B-47

tower
bending moments, 19
description and characteristics, A-9—A-10

turbine
description, 3, A-2
configuration differences, 2, 5

uncertainty, Phase Il measurement, 25

wind shear, for calculation of Richardson
number, 33

wind speed, direction and elevation angle.
See anemometers.

yaw error, 33

yaw moment, 18—20, B-28
detecting yaw brake status, 19
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